MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomaterials for protection and repair of the central nervous system

Author(s)
Pritchard, Christopher D., (Christopher David)
Thumbnail
DownloadFull printable version (5.913Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Robert Langer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An injectable hydrogel for controlled release of methylprednisolone was designed based on the inflammatory response during acute spinal cord injury. The gel is injectable through a small gauge needle, cross-links under physiological conditions, and releases methylprednisolone over a time period on the order of weeks. Swelling properties were characterized to address potential safety concerns for potential clinical use. Two studies are presented towards the development of a model Brown-Sequard syndrome and accompanying behavioral and pathological outcome measures for evaluation of biomaterials in vivo. A modified poly(glycerol-co-sebacic acid) membrane was developed using electrospun poly(s-caprolactone) nanofibers. Retinal adhesion and histology was evaluated in vitro. Membranes were evaluated in vivo for their ability to selectively remove photoreceptors in situ and promote survival and integration of retinal transplants. Viscoelastic poly(ethylene glycol) sols were evaluated as potential vitreous substitutes. Finally, a business plan outlines the strategy towards clinical trials for a hydrogel vitreous substitute.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2012.
 
"June 2012." Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76904
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.