MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human-RRT collaboration in Unmanned Aerial Vehicle mission path planning

Author(s)
Griner, Alina
Thumbnail
DownloadFull printable version (15.12Mb)
Alternative title
Human-Rapidly exploring Random Tree collaboration in UAV mission path planning
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Mary L. Cummings.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Unmanned Aerial Vehicles (UAVs) are used for a variety of military and commercial purposes, including surveillance, combat, and search and rescue. Current research is looking into combining automation with human supervision to facilitate various lower-level cognitive tasks, such as path planning, in order to allow the human operator to focus on high-level mission strategy. Path planning in the presence of dynamic constraints necessitates extensive real-time replanning, which is a computationally intensive task, especially when there is a high density of obstacles or no-fly zones. Recently common choices of path finding algorithms have used variations of a randomized algorithm called Rapidly exploring Random Tree (RRT). This randomized sampling algorithm finds fairly short feasible paths, and it finds them efficiently, however human operators supervising UAV missions may have difficulty collaborating with a randomized algorithm. This thesis presents the experimental results of the second round in an iterative interface design project analyzing human collaboration with a RRT algorithm. In the experiment, operators completed simulated UAV missions in three modes with varying methods of interaction with the RRT algorithm. The collected data included performance and behavioral metrics, as well as subjective feedback. The results demonstrated a clear operator preference for certain methods of interaction with RRT over others. The mode of interaction that allowed these preferred methods had similar results in most metrics to the manual planning mode; the mode with the least preferred methods had significantly worse results. The outcome of the experiment did not conclusively answer the question of whether using RRT for path planning results in lower mission completion times or lower cognitive load on the operator, however the analysis of the data and observations of operator behavior lead to questions for future research.
Description
Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 147-149).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76913
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.