Show simple item record

dc.contributor.advisorMichael Driscoll.en_US
dc.contributor.authorKersting, Alyssa (Alyssa Rae)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.en_US
dc.date.accessioned2013-02-14T15:19:41Z
dc.date.available2013-02-14T15:19:41Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76938
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 39).en_US
dc.description.abstractThe limiting factor in current designs for fast reactors is not only the reactivity, but also the maximum permissible fast-neutron fluence in the cladding, especially for reduced uranium enrichment cores using high-albedo MgO reflectors. The intent of this thesis was to determine the best design parameters - fuel type, fuel compound, fuel arrangement, and coolant - while observing these limitations. The ERANOS code was used to determine the flux values for each design option. A curve was fitted to the fluxes taken at beginning of life, middle of life, and end of life. This curve was then integrated progressively until the clad fluence limit of 4 x 1023 fast neutrons/cm 2 was reached. The different design options were compared with emphasis on minimizing enrichment and maximizing burnup. Sodium was chosen as a coolant because of its extensive experience based compared to the other options, as well as its heat transfer properties. Inverted fuel was found to be better neutronically, in both clad lifetime and burnup than conventional pin-type fuel, but the requirement of fuel venting may discourage use of this option. Uranium carbide was found to be superior to nitride, oxide or metal fuel in its clad lifetime, especially if pin cell fuel is used. If inverted fuel is used, uranium oxide is also a valid choice from a burnup and cost perspective, especially should re-cladding not be feasible or desired, since the reactivity and clad fluence lifetimes of oxide fuel are similar to each other.en_US
dc.description.statementofresponsibilityby Alyssa Kersting.en_US
dc.format.extent39 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleFluence-limited burnup as a function of fast reactor core parametersen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc824556798en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record