MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A study of prompt fast ion losses from neutral beam injection in the DIII-D tokamak

Author(s)
Sutherland, Derek A. (Derek Aiden)
Thumbnail
DownloadFull printable version (4.498Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
Dennis Whyte.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A study of the prompt losses of injected neutral beam born fast ions was conducted on the DIII-D tokamak at General Atomics using scintillator based fast ion loss detectors (FILD) and a reverse orbit calculation code. Prompt losses, also called first orbit losses, result from injected neutrals that are ionized on orbits that terminate to the outer wall before making a complete neoclassical, poloidal revolution. A strike map code has been developed which generates meshes that overlay optical fast ion signals from the FILD scintillator, providing a measurement of the pitch angles and gyroradii of incident fast ions. The pitch angles and gyroradii of incident ions are inputs to a reverse orbit calculation code used to calculate the trajectories of the incident ions in reverse time back to their birth at the intersection of the reverse orbit and an overlaid neutral beam injection footprint. The megahertz (MHz) sampling frequency of the FILD scintillator, along with finer time resolution neutral beam signals, enabled a comparison of the measured time delay between the onset of the neutral beam injection and the measured FILD loss signals with the calculated transit time based on the path length of the simulated reverse orbit. Consistency between the experimentally measured transit times and the simulation orbit times was observed. This result indicates the generated strike maps which provide a measurement of incident ions' gyroradii and pitch angles are accurate. This study supplements current studies seeking to improve the understanding of fast ion transport due to magnetohydrodynamic (MHD) activity, such as reverse shear Alfven eigenmodes (RSAEs) and toroidal Alfven eigenmodes (TAEs), which will be of great importance for predominately self-heated reactor scenarios.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.
 
"June 2012." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 29).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76955
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.