MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ordering prenominal modifiers with a ranking approach

Author(s)
Liu, Jingyi, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.415Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Regina Barzilay.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we present a solution to the natural language processing task of ordering prenominal modifiers, a problem that has applications from machine translation to natural language generation. In machine translation, constraints on modifier orderings vary from language to language so some reordering of modifiers may be necessary. In natural language generation, a representation of an object and its properties often needs to be formulated into a concrete noun phrase. We detail a novel approach that frames this task as a ranking problem amongst the permutations of a set of modifiers, admitting arbitrary features on each candidate permutation and exploiting hundreds of thousands of features in total. We compare our methods to a state-of-the-art class based ordering approach and a strong baseline that makes use of the Google n-gram corpus. We attain a maximum error reduction of 69.8% and average error reduction across all test sets of 59.1% compared to the state-of-the-art, and we attain a maximum error reduction of 68.4% and average error reduction across all test sets of 41.8% compared to our Google n-gram baseline. Finally, we present an analysis of our approach as compared to our baselines and describe several potential improvements to our system.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 57-58).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/76990
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.