MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Defending against side-channel attacks : DynamoREA

Author(s)
Wen, David, M. Eng. (David Y.). Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.693Mb)
Alternative title
DynamoREA : defending against side-channel attacks
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Saman Amarasinghe and Eran Tromer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Modern computer architectures are prone to leak information about their applications through side-channels caused by micro-architectural side-effects. Through these side-channels, attackers can launch timing attacks by observing how long an application takes to execute and using this timing information to exfiltrate secrets from the application. Timing attacks are dangerous because they break mechanisms that are thought to be secure, such as sandboxing or cryptography. Cloud systems are especially vulnerable, as virtual machines that are thought to be completely isolated on the cloud are at risk of leaking information through side-channels to other virtual machines. DynamoREA is a software solution to protect applications from leaking information through micro-architectural side-channels. DynamoREA uses dynamic binary rewriting to transform application binaries at runtime so that they appear to an observer to be executing on a machine that is absent of micro-architectural side-effects and thus do not leak information through micro-architectural side-channels. A set of test applications and standard applications was used to confirm that DynamoREA does indeed prevent sensitive information from leaking through timing channels. DynamoREA is a promising start to using dynamic binary rewriting as a tool to defend against side-channel attacks.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 67-68).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/76992
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.