Tracking multiple mice
Author(s)
Braun, Stav
DownloadFull printable version (7.447Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Tomaso Poggio.
Terms of use
Metadata
Show full item recordAbstract
Monitoring mouse social behaviors over long periods of time is essential for neurobehavioral analysis of social mouse phenotypes. Currently, the primary method of social behavioral plienotyping utilizes human labelers, which is slow and costly. In order to achieve the high throughput desired for scientific studies, social behavioral phenotyping must be automated. The problem of automation can be divided into two tasks; tracking and phenotyping. First, individual body parts of mice must be accurately tracked. This is achieved using shape context descriptors to obtain precise point to point correspondences between templates and mice in any frame of a video. This method provides for greater precision and accuracy than current state of the art techniques. We propose a means by which this tracking information can be used to classify social behaviors between mice.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012. Cataloged from PDF version of thesis. Includes bibliographical references (p. 59-62).
Date issued
2012Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.