Show simple item record

dc.contributor.advisorNicholas Roy.en_US
dc.contributor.authorSimeonov, Dimitar Nen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-02-14T19:16:40Z
dc.date.available2013-02-14T19:16:40Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/77077
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 81-84).en_US
dc.description.abstractNatural language interaction can enable us to interface with robots such as the Personal Robot 2 (PR2), without the need for a special training or equipment. Programming such a robot to follow commands is challenging because natural language has a complex structure and semantics, a model for which needs to be based on linguistic knowledge or learned from examples. In this thesis we first enable the PR2 robot to follow manipulation commands expressed in natural language by applying the Generalized Grounding Graph (G3 ). We model the PR2's actions and their trajectories in the physical environment, define the state-action space and learn a grounding model from an annotated corpus of robot actions aligned with commands. We achieved lower overall performance than previous implementations of G3 had reported. After that, we present an approach for using the linguistic technique of coreference resolution to improve the robot's ability to understand commands consisting of multiple clauses. We constrain the groundings for coreferent phrases to be identical by merging their nodes in the grounding graph. We show that using coreference information increases the robot ability to infer the right action sequence. This brings the robotic capabilities of modeling and understanding natural language closer to our theoretical understanding of discourse.en_US
dc.description.statementofresponsibilityby Dimitar N. Simeonov.en_US
dc.format.extent84 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleThe use of coreference resolution for understanding manipulation commands for the PR2 Roboten_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc825771159en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record