MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An optical-fiber interface to a trapped-ion quantum computer

Author(s)
Kim, Tony Hyun
Thumbnail
DownloadFull printable version (16.28Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Isaac L. Chuang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The trapped-ion quantum computer is an atom-based implementation of a quantum computer that has successfully demonstrated numerous quantum algorithms and the potential for scalability. Fundamental to its operation is the short-range Coulombic interaction among its atomic ion registers, which has led to the development of local, single-chip devices. In this work, we demonstrate the integration of an optical-fiber with a planar ion trap, and show the physical interaction between fiber light and the trapped-ion qubit. As the single-mode fiber is well-suited to the transport of single photons, the fiber interface (when augmented by an optical cavity) represents a means to link distantly located quantum computers through a common optical network. Hence, this work represents a step towards the paradigm of distributed quantum computing: self-contained, technically-simple processors may be optically linked together to perform large-scale quantum computation. This thesis is divided into two parts. In the first, we provide a thorough review of ion trap design and a detailed numerical analysis of trapped-ion motion. This theoretical discussion culminates with the development of an electronic technique that permits the arbitrary, in situ positioning of a trapped atom in the ion trap. The positioning ability is an enabling technology for trap-integration as it allows for complete freedom in the alignment of the trapped atom with respect to the integrated element. In the second part, the construction of the experimental setup and the integrated "fibertrap" is described. In our experiment, a single 38Sr+ is trapped 670 [mu]m above the end of an optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupole qubit transition of 88Sr+. Using in situ translation of the ion, the Gaussian beam profile of the fiber output is imaged, and the fiberion displacement, in units of the mode waist at the ion, is optimized to within 0.13 ± 0.10 of the mode center despite an initial offset of 3.30 ± 0.10 arising from fabrication. We also quantify the perturbative effects of the fiber dielectric on ion trap operation. Light-induced charging by 125 [mu]W of 674 nm fiber light is measured as an induced electric field of ~ 10 V/m at the ion, with charging and discharging time constants of 1.6 ± 0.3 s and 4.7 t 0.6 s. These measurements are of general importance to trapped-ion quantum computing, where the scalability of the platform depends crucially on the feasibility of on-chip optics integration.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 163-174).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/77089
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.