MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and control of an autonomous variable-pitch quadrotor helicopter

Author(s)
Cutler, Mark Johnson
Thumbnail
DownloadFull printable version (51.85Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jonathan P. How.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The aerospace community, particularly in academia, has seen a recent rise in the popularity of fixed-pitch quadrotor helicopters. The fixed-pitch quadrotor is popular largely because of its mechanical simplicity relative to other hovering aircraft. This simplicity, however, places fundamental limits on the achievable actuator bandwidth and the types of maneuvers possible to fly. This thesis explores the extent to which the addition of variable-pitch propellers to a quadrotor helicopter overcomes these limitations. A detailed analysis of the potential benefits of variable-pitch propellers over fixed-pitch propellers for a quadrotor is presented. This analysis is supported with experimental testing to show that variable-pitch propellers, in addition to allowing for efficient generation of negative thrust, substantially increase the maximum rate of thrust change. A nonlinear, quaternion-based control algorithm is presented for controlling the quadrotor. An accompanying trajectory generation method is detailed with an optimization routine for finding minimum-time paths through waypoints. The control law and trajectory generation algorithms are implemented in simulation and on a custom variable-pitch quadrotor. The quadrotor attitude control is performed on the vehicle using a custom autopilot. Position and attitude measurements are made with an off-board motion capture system. Several flight tests are shown with a particular emphasis on the benefits of a variable-pitch qaudrotor over a standard fixed-pitch quadrotor for performing aggressive and aerobatics maneuvers. To the best of the author's knowledge, this work marks the first documented, autonomous variable-pitch quadrotor built for agile and aggressive flight.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.
 
Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 101-106).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77106
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.