Show simple item record

dc.contributor.advisorJacqueline N. Hewitt.en_US
dc.contributor.authorWilliams, Christopher Leighen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2013-03-01T14:33:46Z
dc.date.available2013-03-01T14:33:46Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/77255
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 189-194).en_US
dc.description.abstractThe Murchison Widefield Array (MWA) is a new low-frequency radio array under construction in Western Australia with a primary goal of measuring the power spectrum of the 21-cm signal from neutral hydrogen during the Epoch of Reionization (EoR). In this thesis, we detail efforts to characterize the MWA system, and present scientific results from a 32-element prototype interferometer deployed at the MWA site. We develop simulations and perform anechoic chamber measurements to verify the performance of the MWA antenna tiles. We develop a calibration and imaging pipeline for the MWA which uses w-projection widefield imaging techniques and direction-dependent point spread functions. Using data from an MWA expedition in March 2010, we produce confusion-limited maps covering ~ 2700 square degrees in a region of sky with low galactic temperature. We develop a blind source detection and extraction algorithm, and use it to perform a blind survey in these maps, and detect 655 sources at high significance with an additional 871 candidates. We compare these sources with existing low-frequency radio surveys in order to assess the MWA-32T system performance, and to identify new candidates for ultra-steep spectrum radio sources. In order to constrain the EoR, we apply two power spectrum estimation techniques to this dataset: a Fast Fourier Transform in order to rapidly compute power spectra, and a quadratic estimation method which uses inverse covariance weighting to produce an optimal estimate. We use a principal component analysis to identify and remove the foreground contaminants. In the resulting two-dimensional power spectra, we find the predicted "wedge" feature due to the chromaticity of the instrumental response, and identify a sensitive region free of strong contaminants which can be used for characterizing the EoR signal. We then use these data to produce new limits on the EoR power spectrum at z = 9.en_US
dc.description.statementofresponsibilityby Christopher Leigh Williams.en_US
dc.format.extent194 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleInitial exploration of 21-cm cosmology with imaging and power spectra from the Murchison Widefield Arrayen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc827335431en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record