MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RF test methods for balanced receivers for swept source optical coherence tomography

Author(s)
Lee, ByungKun
Thumbnail
DownloadFull printable version (7.494Mb)
Alternative title
Radio frequency test methods for balanced receivers for swept source optical coherence tomography
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
James G. Fujimoto.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Optical coherence tomography (OCT) has risen as a clinical standard of diagnosis and management of ocular diseases since its development in 1991 by the MIT group and the collaborators. Since current cutting-edge OCT technology based on frequency-swept lasers has achieved scanning rate over 1,000,000 axial scans per second, the imaging speed is limited by the detection and analog-to-digital conversion stages. In order to match the rapid advancement of OCT imaging speed, a variety of balanced photoreceivers have been developed. A low-cost setup for systematic performance evaluation of the receivers in radio frequency (RF) range up to 2GHz is presented. The test procedure, including measurements of gain, bandwidth, and harmonic distortion, is automated by National Instruments Virtual Instrument Software Architecture (NI-VISA) programming using USB and GPIB interface. Since the test equipment has parasitic response, quasi-calibration using a fast biased detector is necessary. Detailed description of the equipment and the test protocol is included as well as the performance comparison of the available receiver products and prototypes.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 47-48).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77446
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.