MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral analysis of X-ray binaries

Author(s)
Fridriksson, Joel Karl
Thumbnail
DownloadFull printable version (36.95Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Walter H. G. Lewin and Jeroen Homan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), with a particular source, XTE J1701-462, playing a central role. First, I construct and study color-color and hardness-intensity diagrams (CDs and HIDs) for a large sample of NS-LMXBs using Rossi X-ray Timing Explorer (RXTE) data spanning ~15 years. I study in particular detail three sources whose complicated CDs/HIDs are strongly affected by secular motion -- Cyg X-2, Cir X-1, and GX 13+1 -- and show that Cyg X-2 and Cir X-1 display CD/HID evolution with strong similarities to the transient Z source XTE J1701-462, which was previously shown to have evolved through all subclasses of NS-LMXBs as a result of changes in mass accretion rate. I build on the results for XTE J1701-462, Cyg X-2, and Cir X-1 and rank all the sources in the sample based only on their CD/HID morphology. I speculate that this represents a rough ranking in terms of the relative ranges in mass accretion rate experienced by the sources. Next, I use data from RXTE, Swift, Chandra, and XMM-Newton to study the transition to quiescence and the first ~1200 days of the quiescent phase of XTE J1701-462 following the end of its extraordinarily luminous 19 month outburst in 2006-2007. I find that the crust of the neutron star cooled rapidly during the first ~200 days of quiescence, after having been heated out of thermal equilibrium with the core during the outburst; the source has subsequently shown slower cooling along with sporadic low-level accretion activity. I discuss the implications of the observed cooling behavior and low-level accretion, the former of which yields information on the internal properties of the neutron star. Finally, I use multiple Chandra observations to study the X-ray source populations in the late-type galaxies NGC 6946 and NGC 4485/4490. A particular emphasis is placed on investigating the long-term variability of the sources, several of which are ultraluminous. I present detailed source catalogs and characterize the populations -- which consist primarily of X-ray binaries -- using X-ray luminosity functions and CDs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/77486
Department
Massachusetts Institute of Technology. Dept. of Physics.
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Physics - Ph.D. / Sc.D.
  • Physics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.