MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observational and evolutionary studies of neutron star X-ray binaries

Author(s)
Lin, Jinrong, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (17.69Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Deepto Chakrabarty and Saul Rappaport.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we present our observational and evolutionary studies of neutron stars in X-ray binary systems. A variety of topics are discussed, which are all related by a single scientific theme, namely, helping to set constraints on the mass-radius relation of neutron stars, and hence on their equations of state (EOS). In Chapter 1 we review the current neutron star masses M and radii R measurement techniques utilizing the X-ray observation of neutron stars in binaries. These techniques fall into two categories: timing and spectral analysis. In Chapter 2 we present our spectral and timing analysis of 4U 2129+47. We show that 4U 2129+47 might be in a hierarchical triple system. The source has been dropping into deeper quiescence during the last decade. The absence of the power-law hard tail in its X-ray spectrum make it a good candidate for measuring neutron star radius. In Chapter 3 we present our analysis of EXO 0748-676. We show that the previously reported narrow absorption lines are inconsistent with the detected high amplitude of the 552 Hz burst oscillations. In Chapter 4 we present our semi-numerical method of evaluating the significance of burst oscillations. With this method, we searched 1187 archived RXTE Type-I X-ray bursts for high frequency oscillation modes. In Chapter 5, we present our evolutionary study of the most massive neutron star that has been recently found: PSR J1614-2230. The study has been carried out with the recently developed star evolution code "MESA". We We have computed an extensive grid of binary evolution tracks to represent low- and intermediate-mass X-ray binaries (LMXBs and IMXBs). The general results will be presented in Chapter 6.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 117-125).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/77487
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.