MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerated clustering through locality-sensitive hashing

Author(s)
Kishore, Shaunak
Thumbnail
DownloadFull printable version (846.9Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Jonathan A. Kelner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We obtain improved running times for two algorithms for clustering data: the expectation-maximization (EM) algorithm and Lloyd's algorithm. The EM algorithm is a heuristic for finding a mixture of k normal distributions in Rd that maximizes the probability of drawing n given data points. Lloyd's algorithm is a special case of this algorithm in which the covariance matrix of each normally-distributed component is required to be the identity. We consider versions of these algorithms where the number of mixture components is inferred by assuming a Dirichlet process as a generative model. The separation probability of this process, [alpha], is typically a small constant. We speed up each iteration of the EM algorithm from O(nd2k) to O(ndk log 3(k/a))+nd 2 ) time and each iteration of Lloyd's algorithm from O(ndk) to O(nd(k/a). 39) time.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 18).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77534
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science., Mathematics.

Collections
  • Graduate Theses
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.