MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Engineering Systems Division
  • Engineering Systems - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Engineering Systems Division
  • Engineering Systems - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tracking and fleet optimization of Reusable Transport Items in the shipping industry

Author(s)
Lefebvre, Jean-Marie, M. Eng. Massachusetts Institute of Technology; Yue, Dameng
Thumbnail
DownloadFull printable version (17.24Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering Systems Division.
Advisor
James B. Rice, Jr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores the strategies, methodologies and tools for an optimal management of Reusable Transport Items, such as containers or chassis, in an extensive multi-depots network. We use an ocean shipping company operating globally to propose a broad, comprehensive and integrated system for an optimal management of the fleet, embracing technology, processes and monitoring system. The ability to track these assets is the first step to visibility and fleet optimization and we will question the opportunity for a company to invest in a real time tracking technology. In highly complex logistic networks, the challenge is to get the right equipment at the right place at the right time, in a cost efficient manner and with a fleet size as small as possible. Beyond increased visibility through tracking capabilities, we show that choosing an appropriate utilization metrics helps identify and quantify other areas of improvement. Using actual data, we evaluate to what extent the fleet size can be reduced by improving asset utilization and how leasing also impacts operating costs. We also show how the structural imbalance of trade (some regions being net exporters while others are net importers) impacts both global repositioning policy and local inventory policy, with depots of different profiles requiring different policies. Understanding this systematic and systemic approach of fleet management, we assess the contribution of tracking technology capabilities to these potential improvements.
Description
Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 77-78).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77539
Department
Massachusetts Institute of Technology. Engineering Systems Division.
Publisher
Massachusetts Institute of Technology
Keywords
Engineering Systems Division.

Collections
  • Engineering Systems - Master's degree
  • Engineering Systems - Master's degree
  • SCALE Research Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.