MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

Author(s)
Sim, Min Sub
Thumbnail
DownloadFull printable version (10.51Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Tanja Bosak and Shuhei Ono.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used to trace the biogeochemical cycling of sulfur in nature, but a mechanistic understanding of factors that control the range of isotope fractionation is still lacking. This thesis investigates links between the physiology of sulfate reducing bacteria in pure cultures and multiple sulfur isotope (³², ³³, ³⁴34S, and ³⁶S) fractionation during MSR in batch and continuous culture experiments. Experiments address the influence of nutrient and electron donor conditions, including organic carbon, nitrogen, and iron, in cultures of a newly isolated marine sulfate reducing bacterium (DMSS-1). An actively growing culture of DMSS-1 produced sulfide depleted in ³⁴S by 6 to 66%o, depending on the availability and chemistry of organic electron donors. The magnitude of isotope effect correlated well with the cell specific sulfate reduction rate (csSRR), and the largest isotope effects occurred when cultures grew slowly on glucose, a recalcitrant organic substrate. These findings bridge the long-standing discrepancy between the upper limit for S-isotope effect in laboratory cultures and the corresponding observations in nature and indicate that the large (>46 %o) fractionation of S-isotopes does not unambiguously record the oxidative sulfurrecycling. When the availability of iron was limited, the increase in S-isotope fractionation was accompanied by a decrease in the cytochrome c content as well as csSRR. In contrast, growth in nitrogenlimited cultures increased both csSRR and S-isotope fractionation. The influence of individual enzymes and electron carriers involved in sulfate respiration on the fractionation of S-isotopes was also investigated in cultures of mutant strains of Desulfovibrio vulgaris Hildenborough. The mutant lacking Type I tetraheme cytochrome c₃ fractionated ³⁴S/³²S ratio 50% greater relative to the wild type. The increasing S-isotope fractionation accompanied the evolution of H2 in the headspace and the decreasing csSRR. These results further demonstrate that the flow of electrons to terminal reductases imparts the primary control on the magnitude of the fractionation of S-isotopes, suggested by culture experiments using DMSS-1.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77788
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.