MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Essays on finance, learning, and macroeconomics

Author(s)
Doyle, Joseph Buchman, Jr
Thumbnail
DownloadFull printable version (16.31Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Economics.
Advisor
Anna Mikusheva and Ricardo Caballero.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis consists of four essays on finance, learning, and macroeconomics. The first essay studies whether learning can explain why the standard consumption-based asset pricing model produces large pricing errors for U.S. equity returns. I prove that under learning standard moment conditions need not hold in finite samples, leading to pricing errors. Simulations show that learning can generate quantitatively realistic pricing errors and a substantial equity risk premium. I find that a model with learning is not rejected in the data, producing pricing errors that are statistically indistinguishable from zero. The second essay (co-authored with Anna Mikusheva) studies the properties of the common impulse response function matching estimator (IRFME) in settings with many parameters. We prove that the common IRFME is consistent and asymptotically normal only when the horizon of IRFs being matched grows slowly enough. We use simulations to evaluate the performance of the common IRFME in a practical example, and we compare it with an infrequently used bias corrected approach, based on indirect inferences. Our findings suggest that the common IRFME performs poorly in situations where the sample size is not much larger than the horizon of IRFs being matched, and in those situations, the bias corrected approach with bootstrapped standard errors performs better. The third essay (co-authored with Ricardo Caballero) documents that, in contrast with their widely perceived excess return, popular carry trade strategies yield low systemicrisk- adjusted returns. In contrast, hedging the carry with exchange rate options produces large returns that are not a compensation for systemic risk. We show that this result stems from the fact that the corresponding portfolio of exchange rate options provides a cheap form of systemic insurance. The fourth essay shows that the documented overbidding in pay-as-you-go auctions relative to a static model can be explained by the presence of a small subset of aggressive bidders. I argue that aggressive bidding can be rational if users are able to form reputations that deter future competition, and I present empirical evidence that this is the case. In auctions without any aggressive bidders, there is no evidence of overbidding in PAYGA.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Economics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 189-198).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77791
Department
Massachusetts Institute of Technology. Department of Economics
Publisher
Massachusetts Institute of Technology
Keywords
Economics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.