Show simple item record

dc.contributor.advisorJacquin C. Niles.en_US
dc.contributor.authorBelmont, Brian J. (Brian Joshua)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biological Engineering.en_US
dc.date.accessioned2013-03-28T18:07:12Z
dc.date.available2013-03-28T18:07:12Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78136
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 114-131).en_US
dc.description.abstractThe importance and pervasiveness of naturally occurring regulation of RNA function in biology is increasingly being recognized. A common regulatory mechanism uses inducible protein-RNA interactions to shape diverse aspects of cellular RNA fate. Recapitulating this using a novel set of protein-RNA interactions is appealing given the potential to subsequently modulate RNA biology in a manner decoupled from normal cellular physiology. We describe a ligand-responsive protein-RNA interaction module that can be used to target a specific RNA for subsequent regulation. Using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, RNA aptamers binding to the bacterial Tet Repressor protein (TetR) with low- to sub- nanomolar affinities were identified. This interaction is reversibly controlled by tetracycline in a manner analogous to the interaction of TetR with its cognate DNA operator. Aptamer minimization and mutational analyses support a functional role for conserved sequence and structural motifs in TetR binding. We illustrate the utility of this chemically-inducible RNA-protein interaction to directly regulate translation in both a prokaryotic and eukaryotic organism. By genetically encoding TetR-binding RNA elements into the 5'-untranslated region (5'-UTR) of a given mRNA, translation of a downstream coding sequence is directly controlled by TetR and tetracycline analogs. In endogenous and synthetic 5'-UTR contexts, this modular system efficiently regulates the expression of multiple target genes, and is sufficiently stringent to distinguish functional from nonfunctional RNA-TetR interactions. We also demonstrate engineering this TetR-aptamer module to regulate subcellular mRNA localization. This is efficiently achieved by fusing TetR to proteins natively involved in localizing endogenous transcripts, and genetically encoding TetR-binding RNA aptamers into the target transcript. Using this platform, we achieve tetracycline-regulated enhancement of target transcript subcellular localization. We also systematically examine some rules for successfully forward engineering this RNA localization system. Altogether, these results define and validate an inducible protein-RNA interaction module that incorporates desirable aspects of a ubiquitous mechanism for regulating RNA function in Nature and that can be used as a foundation for functionally and reversibly controlling multiple fates of RNA in cells.en_US
dc.description.statementofresponsibilityby Brian J. Belmont.en_US
dc.format.extent131 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleEngineered mRNA regulation using an inducible protein-RNA aptamer interactionen_US
dc.title.alternativeEngineered mRibonucleic acid regulation using an inducible protein-Ribonucleic acid aptamer interactionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc828921949en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record