MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unprocessed rice husk ash as a partial replacement of cement for low-cost concrete

Author(s)
Brown, Dorothy Kamilah
Thumbnail
DownloadFull printable version (11.11Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
John A. Ochsendorf.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cement is a very valuable commodity as it can be used to construct structurally sound buildings and infrastructure. However, in many developing countries cement is expensive due to the unavailability of local resources to produce enough cement in-country to meet the demand for this material, and therefore it has to be imported. In rice-producing countries rice husk ash-a material naturally high in silica-can be used as a supplementary cementitious material and can substitute a portion of Portland cement in concrete without sacrificing the compressive strength. This study investigates the use of Cambodian rice husk ash in 10, 20 and 30% replacements of Portland cement by mass in mortar, without optimization of the ash by controlled burning. Five ashes collected from different sources in Cambodia were assessed for their suitability for use in rural Cambodian construction via compression strength testing of 2" (50 mm) mortar cubes. A 20% replacement of unprocessed Cambodian rice husk ash was deemed appropriate for use in small-scale, rural structural applications. Low-tech methods of grinding the ash were also investigated and were found to drastically increase the compressive strength of RHA-cement mortars in comparison to mortars made with unground RHA.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 73-76).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78143
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.