MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Removal of metal oxide defects through improved semi-anisotropic wet etching process

Author(s)
Dave, Neha H. (Neha Hemang)
Thumbnail
DownloadFull printable version (9.806Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Jung-Hoon Chun.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Data recently collected from an industrial thin film manufacturer indicate that almost 8% of devices are rejected due to excess metal, or unwanted metal on the device surface. Experimentation and analysis suggest that almost half of these defects are caused by incomplete removal of nickel oxides that form on top of the conductive nickel surface throughout the heated environment of the upstream process. This study classified and identified the composition of these excess metal defects, evaluated recommended wet etch methods to remove nickel oxide, and finally proposes a wet etch process that will rapidly remove defects while continuing to maintain the desired semi-anisotropic etch profile, uncharacteristic of most wet immersion etch processes. Results attested that rapid exposure to dilute (40%) nitric acid followed by immediate immersion into a cleaning agent, proprietary nickel etchant, and titanium tungsten etchant removed all nickel oxide defects. Upon implementation, this method has the potential to reduce scrap due to excess metal by 3% and reduce overall etch process time by 25%. In addition, a process was developed to completely etch patterned substrates with high defect density mid process and rework them from raw substrates.
Description
Thesis (M. Eng. in Manufacturing)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 52).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78167
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.