MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaporation-induced non-wetting droplets on superhydrophilic surfaces

Author(s)
Adera, Solomon (Solomon E.)
Thumbnail
DownloadFull printable version (14.14Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Evelyn N. Wang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A droplet deposited on a rough, lyophilic surface satisfying the imbibition condition, results in spontaneous spreading and hence complete wetting. However, in this thesis, we demonstrate that this wetting behavior can be altered by superheating the substrate such that droplets can reside in a non-wetting state due to evaporation. Photolithography and deep reactive ion etching were used to fabricate well-defined silicon micropillar arrays with a square pattern with varying pillar diameter, height, and center-to-center spacing. Water droplets placed on these microstructured surfaces at room temperature demonstrated superhydrophilic behavior with liquid filling the voids between pillars resulting in very low contact angle, and hence complete wetting. However, when the microstructured surface was superheated above a critical superheat, the superhydrophilicity was lost and non-wetting droplets were formed on the top surface of the micropillar array structure. The superheat required to deposit a non-wetting droplet (> 75°C) was found to be significantly higher than that required to sustain an already deposited non-wetting droplet (< 35°C). Moreover, the superheat required to sustain a non-wetting droplet after the initial deposition was observed to decrease with the square of the droplet radius. A 1-D lubrication type model based on a force balance between the wetting and non-wetting forces is developed which explains the mechanism by which non-wetting droplets can reside on superhydrophilic surfaces at superheated conditions due to induced evaporation. Moreover, the model predicts a square relationship between the superheat required to form non-wetting droplets and the droplet radius which is in agreement with experimental observation. These observations where non-wetting droplets reside on superhydrophilic surfaces at superheated conditions have implications for phase-change based heat transfer applications where the loss of contact between the substrate and the heat transfer fluid could be detrimental to the device performance.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
"September 2012." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 66-68).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78178
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.