MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct and quantitative absorptive spectroscopy of nanowires

Author(s)
Tong, Jonathan Kien-Kwok
Thumbnail
DownloadFull printable version (11.74Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Gang Chen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Photonic nanostructures exhibit unique optical properties that are attractive in many different applications. However, measuring the optical properties of individual nanostructures, in particular the absorptive properties, remains a significant challenge. Conventional methods typically provide either an indirect or qualitative measure of absorption. The objective of this thesis is to therefore demonstrate a method capable of directly and quantitatively measuring the absorptive properties of individual nanostructures. This method is based on atomic force microscope (AFM) cantilever thermometry where a bimorph cantilever is used as a heat flux sensor. These sensors operate on the principle of a thermomechanical bending response and by virtue of their dimensionality, are capable of picowatt sensitivity. To validate the use of this technique, a single silicon nanowire is measured. By attaching a silicon nanowire to a cantilever and illuminating the sample with monochromatic light, the absolute absorptance spectrum of the nanowire was measured and shown to match well with theory. This spectroscopic technique can conceivably be used to measure even smaller samples, samples which cannot be characterized using conventional methods.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 125-130).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78197
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.