Browsing Department of Mathematics by Title
Now showing items 282301 of 806

Gaugefixing and equivariant cohomology
(Massachusetts Institute of Technology, 1994) 
Gaussian free field, SchrammLoewner evolution and Liouville quantum gravity
(Massachusetts Institute of Technology, 2017)Consider an instance h of the Gaussian free field on a simply connected domain ... We study several properties of the level lines: continuity, monotonicity, reversibility and targetindependence ... In the second part, we ... 
Gemoetric identities in invariant theory
(Massachusetts Institute of Technology, 1995) 
Generalized algebraic theories : a model theorectic approach,
(Massachusetts Institute of Technology, 1968) 
Generalized Dickson invariants
(Massachusetts Institute of Technology, 1994) 
The generalized HarishChandra homomorphism for Hecke algebras of real reductive Lie groups
(Massachusetts Institute of Technology, 2005)For complex reductive Lie algebras g, the classical HarishChandra homomorphism allows to link irreducible finite dimensional representations of g to those of certain subalgebras l. The CasselmanOsborne theorem establishes ... 
Generalized longwave evolution equations
(Massachusetts Institute of Technology, 1998) 
Generalized NavierStokes equations for active turbulence
(Massachusetts Institute of Technology, 2018)Recent experiments show that active fluids stirred by swimming bacteria or ATPpowered microtubule networks can exhibit complex flow dynamics and emergent pattern scale selection. Here, I will investigate a simplified ... 
Generalized straightening laws for products of determinants
(Massachusetts Institute of Technology, 1997) 
The generalized Tate construction
(Massachusetts Institute of Technology, 2012)The purpose of this work is give some field notes on exploring the idea that a generalized Tate construction tk reduces chromatic level in stable homotopy theory. The first parts introduce the construction and discuss ... 
Generalized Whittaker vectors and representation theory.
(Massachusetts Institute of Technology, 1979) 
Generating functions and enumeration of sequences.
(Massachusetts Institute of Technology, 1977) 
Generation and recognition of formal languages.
(Massachusetts Institute of Technology, 1965) 
Geometric algorithms for reconfigurable structures
(Massachusetts Institute of Technology, 2011)In this thesis, we study three problems related to geometric algorithms of reconfigurable structures. In the first problem, strip folding, we present two universal hinge patterns for a strip of material that enable the ... 
Geometric and algebraic properties of polyomino tilings
(Massachusetts Institute of Technology, 2004)In this thesis we study tilings of regions on the square grid by polyominoes. A polyomino is any connected shape formed from a union of grid cells, and a tiling of a region is a collection of polyominoes lying in the region ... 
Geometric approaches to computing Kostka numbers and LittlewoodRichardson coefficients
(Massachusetts Institute of Technology, 2004)Using tools from combinatorics, convex geometry and symplectic geometry, we study the behavior of the Kostka numbers and LittlewoodRichardson coefficients (the type A weight multiplicities and ClebschGordan coefficients). ... 
Geometric Langlands in prime characteristic
(Massachusetts Institute of Technology, 2012)Let C be a smooth projective curve over an algebraically closed field k of sufficiently large characteristic. Let G be a semisimple algebraic group over k and let GV be its Langlands dual group over k. Denote by BunG the ... 
Geometric manipulation of light : from nonlinear optics to invisibility cloaks
(Massachusetts Institute of Technology, 2012)In this work, we study two different manipulations of electromagnetic waves governed by macroscopic Maxwell's equations. One is frequency conversion of such waves using small intrinsic material nonlinearities. We study ... 
Geometric quantization and dynamical constructions on the space of Kähler metrics
(Massachusetts Institute of Technology, 2008)This Thesis is concerned with the study of the geometry and structure of the space of Kihler metrics representing a fixed cohomology class on a compact Kähler manifold. The first part of the Thesis is concerned with a ... 
A geometric theory of outliers and perturbation
(Massachusetts Institute of Technology, 2002)We develop a new understanding of outliers and the behavior of linear programs under perturbation. Outliers are ubiquitous in scientific theory and practice. We analyze a simple algorithm for removal of outliers from a ...