MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of phenanthriplatin, a novel monofunctional platinum based anticancer drug candidate, with cisplatin, a classic bifunctional anticancer drug

Author(s)
Li, Meiyi, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.640Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Stephen J. Lippard.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Nucleotide excision repair, a DNA repair mechanism, is the major repair pathway responsible for removal of platinum-based anticancer drugs. In this study, 146 bp duplexes were prepared containing either a site-specific cisdiammineplatinum( Il)-DNA intrastrand d(GpG) cross-link or a cisdiamminephenanthridinechloroplatinum( Il)-DNA dG adduct. Comparison of the repair efficiencies of the two adducts reveals that the diamminephenanthridinechloroplatinum(lI)-DNA dG lesion eludes the nucleotide excision repair pathway better than diammineplatinum(lI)-DNA intrastrand d(GpG) cross-link. A factor that may be relevant to the difference is the influence of platination on DNA-mediated charge transfer. Atomic force microscopy is a method by which we can explore the possibility that phenanthriplatin influences charge transfer properties of DNA. Long DNA duplexes site-specifically modified with cisplatin or phenthanriplatin were prepared for AFM studies.
Description
Thesis (S.M. in Inorganic chemistry)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.
 
Cataloged from PDF version of thesis. Vita.
 
Includes bibliographical references (p. 38-40).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78439
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.