Show simple item record

dc.contributor.advisorMehmet Fatih Yanik.en_US
dc.contributor.authorChang, Tsung-Yao, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-04-12T19:24:24Z
dc.date.available2013-04-12T19:24:24Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78443
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractHigh-throughput screening (HTS) is seen as one of the most promising technologies to facilitate biomedical studies and pharmaceutical discoveries. Although large varieties of in vitro HTS technologies have opened great opportunities, the speed of improvement has been limited by lack of advanced tools for in vivo screening on whole complex organisms, such as vertebrates. To address this issue, a high-throughput platform as a vertebrate total analysis/screening system (V-TAS) is proposed. This platform consists of two independent parts: an automated imaging system and an automated microinjection system. These two systems are designed for general high-content high-throughput pharmaceutical and genetic screens on whole zebrafish larvae, and therefore, are well-modularized for adapting different situations. Furthermore, to demonstrate the capability of V-TAS, a screen of lipidoid library for biologics delivery on thousands of animals was conducted. Very limited damage to the larvae was shown during the screening. In the end, the author also validated the hits discovered by V-TAS can be applied to more advanced animal models such as rats, and be more predictable than cell-based assays.en_US
dc.description.statementofresponsibilityby Tsung-Yao Chang.en_US
dc.format.extent76 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHigh-throughput vertebrate total analysis/screening platformen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc831437348en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record