Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorLim, Sejoonen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-04-12T19:25:13Z
dc.date.available2013-04-12T19:25:13Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78452
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 191-201).en_US
dc.description.abstractTraffic congestion is a serious world-wide problem. Drivers have little knowledge of historical and real-time traffic congestion for the paths they take and often tend to drive suboptimal routes. Congestion phenomena are sure to be influenced by the coming of autonomous cars. This thesis presents route planning algorithms and a system for either autonomous or human-driven cars in road networks dealing with travel time uncertainty and congestion. First, a stochastic route planning algorithm is presented that finds the best path for a group of multiple agents. Our algorithm provides mobile agents with optimized routes to achieve time-critical goals. Optimal selections of agent and visit locations are determined to guarantee the highest probability of task achievement while dealing with uncertainty of travel time. Furthermore, we present an efficient approximation algorithm for stochastic route planning based on pre-computed data for stochastic networks. Second, we develop a distributed congestion-aware multi-agent path planning algorithm that achieves the social optimum, minimizing aggregate travel time of all the agents in the system. As the number of agents grows, congestion created by agents' path choices should be considered. Using a data-driven congestion model that describes the travel time as a function of the number of agents on a road segment, we develop a practical method for determining the optimal paths for all the agents in the system to achieve the social optimum. Our algorithm uses localized information and computes the paths in a distributed manner. We implement the algorithm in multi-core computers and demonstrate that the algorithm has a good scalability. Third, a path planning system using traffic sensor data is then implemented. We predict the traffic speed and flow for each location from a large set of sensor data collected from roving taxis and inductive loop detectors. Our system uses a data-driven traffic model that captures important traffic patterns and conditions using the two sources of data. We evaluate the system using a rich set of GPS traces from 16,000 taxis in Singapore and show that the city-scale congestion can be mitigated by planning drivers' routes, while incorporating the congestion effects generated by their route choices.en_US
dc.description.statementofresponsibilityby Sejoon Lim.en_US
dc.format.extent201 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCongestion-aware traffic routing for large-scale mobile agent systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc832442292en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record