Show simple item record

dc.contributor.advisorSamuel R. Madden and David R. Karger.en_US
dc.contributor.authorMarcus, Adam, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-04-12T19:25:26Z
dc.date.available2013-04-12T19:25:26Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78454
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 119-124).en_US
dc.description.abstractCrowdsourced labor markets make it possible to recruit large numbers of people to complete small tasks that are difficult to automate on computers. These marketplaces are increasingly widely used, with projections of over $1 billion being transferred between crowd employers and crowd workers by the end of 2012. While crowdsourcing enables forms of computation that artificial intelligence has not yet achieved, it also presents crowd workflow designers with a series of challenges including describing tasks, pricing tasks, identifying and rewarding worker quality, dealing with incorrect responses, and integrating human computation into traditional programming frameworks. In this dissertation, we explore the systems-building, operator design, and optimization challenges involved in building a crowd-powered workflow management system. We describe a system called Qurk that utilizes techniques from databases such as declarative workflow definition, high-latency workflow execution, and query optimization to aid crowd-powered workflow developers. We study how crowdsourcing can enhance the capabilities of traditional databases by evaluating how to implement basic database operators such as sorts and joins on datasets that could not have been processed using traditional computation frameworks. Finally, we explore the symbiotic relationship between the crowd and query optimization, enlisting crowd workers to perform selectivity estimation, a key component in optimizing complex crowd-powered workflows.en_US
dc.description.statementofresponsibilityby Adam Marcus.en_US
dc.format.extent124 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleOptimization techniques for human computation-enabled data processing systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc832618269en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record