MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability effects of frequency controllers and transmission line configurations on power systems with integration of wind power

Author(s)
Abdelhalim, Hussein Mohamed
Thumbnail
DownloadFull printable version (4.373Mb)
Alternative title
Small-signal stability effects of frequency and voltage controllers on power systems with integration of wind power
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kamal Youcef-Toumi and Amro Farid.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis investigates the stability effects of the integration of wind power on multi-machine power systems. First, the small-signal stability effects of turbine governors connected to synchronous generators in the presence of large-scale penetration of wind and load power disturbances are analyzed. Results suggest that tuning the turbine governors when wind power generation is present can improve the small-signal stability of an interconnected system. Then, the transient stability effects of integrating doubly-fed induction wind turbine generators through different transmission line configurations and at different buses are analyzed. Results show that connecting the wind through transmission lines and to different buses introduces a delay in the oscillatory response of the synchronous generator speed, and bus voltage oscillations are also affected. Results also show that there is no significant effect on the base cases when using different interconnection voltages to connect the wind. Overall, the results can be used by power system operators when making decisions on turbine governor tuning and transmission line configurations when connecting wind farms to existing power systems while optimizing for small-signal and transient stability response.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 52-53).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78461
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.