Show simple item record

dc.contributor.advisorAlan V. Oppenheim.en_US
dc.contributor.authorMcCormick, Martin (Martin Steven)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-04-12T19:27:02Z
dc.date.available2013-04-12T19:27:02Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78468
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 71-74).en_US
dc.description.abstractThis thesis develops an exact approach for processing pulse signals from an integrate-and-fire system directly in the time-domain. Processing is deterministic and built from simple asynchronous finite-state machines that can perform general piecewise-linear operations. The pulses can then be converted back into an analog or fixed-point digital representation through a filter-based reconstruction. Integrate-and-fire is shown to be equivalent to the first-order sigma-delta modulation used in oversampled noise-shaping converters. The encoder circuits are well known and have simple construction using both current and next-generation technologies. Processing in the pulse-domain provides many benefits including: lower area and power consumption, error tolerance, signal serialization and simple conversion for mixed-signal applications. To study these systems, discrete-event simulation software and an FPGA hardware platform are developed. Many applications of pulse-processing are explored including filtering and signal processing, solving differential equations, optimization, the minsum / Viterbi algorithm, and the decoding of low-density parity-check codes (LDPC). These applications often match the performance of ideal continuous-time analog systems but only require simple digital hardware. Keywords: time-encoding, spike processing, neuromorphic engineering, bit-stream, delta-sigma, sigma-delta converters, binary-valued continuous-time, relaxation-oscillators.en_US
dc.description.statementofresponsibilityby Martin McCormick.en_US
dc.format.extent74 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDigital pulse processingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc834089219en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record