MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matroid prophet inequalities and Bayesian mechanism design

Author(s)
Weinberg, S. Matthew (Seth Matthew)
Thumbnail
DownloadFull printable version (2.110Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Constantinos Daskalakis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a "prophet" who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of p matroid constraints, the prophet's reward exceeds the gambler's by a factor of at most 0(p), and this factor is also tight. Beyond their interest as theorems about pure online algoritms or optimal stopping rules, these results also have applications to mechanism design. Our results imply improved bounds on the ability of sequential posted-price mechanisms to approximate optimal mechanisms in both single-parameter and multi-parameter Bayesian settings. In particular, our results imply the first efficiently computable constant-factor approximations to the Bayesian optimal revenue in certain multi-parameter settings. This work was done in collaboration with Robert Kleinberg.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 42-44).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78473
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.