MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The scattering and shrinking of a Gaussian wave packet by delta function potentials

Author(s)
Sun, Fei, S.B. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (4.880Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Edmund Bertschinger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we wish to test the hypothesis that scattering by a random potential causes localization of wave functions, and that this localization is governed by the Born postulate of quantum mechanics. We begin with a simple model system: a one-dimensional Gaussian wave packet incident from the left onto a delta function potential with a single scattering center. Then we proceed to study the more complicated models with double and triple scattering centers. Chapter 1 briefly describes the motivations behind this thesis and the phenomenon related to this research. Chapter 2 to Chapter 4 give the detailed calculations involved in the single, double and triple scattering cases; for each case, we work out the exact expressions of wave functions, write computer programs to numerically calculate the behavior of the wave packets, and use graphs to illustrate the results of the calculations. In Chapter 5, we study the parameters that determine how much the wave function shrinks, including the initial width, the initial position and the momentum of the Gaussian wave packet, and the strength of and the spacing between the delta functions; then we examine different combinations of the parameters in order to find a pattern to achieve maximum shrinking. Chapter 6 concludes the thesis with the essential results of this research as well as its implications and potentials.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 59).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78487
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.