Show simple item record

dc.contributor.advisorHenry D. Jacoby.en_US
dc.contributor.authorLickley, Megan Jeramazen_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.coverage.spatialn-us---en_US
dc.date.accessioned2013-04-12T19:29:40Z
dc.date.available2013-04-12T19:29:40Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/78496
dc.descriptionThesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 75-77).en_US
dc.description.abstractThe 2005 hurricane season was particularly damaging to the United States, contributing to significant losses to energy infrastructure -much of it a result of flooding from storm surges during hurricanes Katrina and Rita. Previous research suggests that these events are not isolated, but rather foreshadow a risk that is to continue and likely increase with a changing climate (17). Since extensive energy infrastructure exists along the U.S. Atlantic and Gulf coasts, these facilities are exposed to an increasing risk of flooding. We study the combined impacts of anticipated sea level rise, hurricane activity, and subsidence on energy infrastructure in these regions with a first application to Galveston Bay. Using future climate conditions as projected by four different Global Circulation Models (GCMs), we model the change in hurricane activity from present day climate conditions in response to a climate projected in 2100 under the IPCC A l B emissions scenario using hurricane analysis developed by Emanuel (5). We apply the results from hurricane runs from each model to the SLOSH model (Sea, Lake and Overland Surges from Hurricanes) (19) to investigate the change in frequency and distribution of surge heights across climates. Further, we incorporate uncertainty surrounding the magnitude of sea level rise and subsidence, resulting in more detailed projections of risk levels for energy infrastructure over the next century. With a detailed understanding of energy facilities' changing risk exposure, we conclude with a dynamic programming cost-benefit analysis to optimize decision making over time as it pertains to adaptation.en_US
dc.description.statementofresponsibilityby Megan Jeramaz Lickley.en_US
dc.format.extent77 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleThe vulnerability of U.S. coastal energy infrastructure under climate changeen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc836772188en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record