MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical investigation of Stokes shifts and reaction pathways

Author(s)
Top, Laken M. (Laken Michelle)
Thumbnail
DownloadFull printable version (6.269Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Troy Van Voorhis and Jeffrey C. Grossman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Solar thermal fuels and fluorescent solar concentrators provide two ways in which the energy from the sun can be harnessed and stored. While much progress has been made in recent years, there is still much more to learn about the way that these applications work and more efficient materials are needed to make this a feasible source of renewable energy. Theoretical chemistry is a powerful tool which can provide insight into the processes involved and the properties of materials, allowing us to predict substances that might improve the efficiency of these devices. In this work, we explore how the delta self-consistent field method performs for the calculation of Stokes shifts for conjugated dyes. We also develop a new reaction path finding method which uses a combination of trigonometric functions and information about the initial and final states in the reaction to generate an approximate path. We show that this path finding method works well for several model systems including a seven atom Lennard-Jones cluster. The ability to calculate excited state properties at a reasonably low cost and to find convergent reaction pathways is extremely beneficial for understanding and improving solar devices.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 38-40).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78532
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.