dc.contributor.advisor | Russ Tedrake. | en_US |
dc.contributor.author | Barry, Andrew J. (Andrew James) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2013-04-12T19:37:08Z | |
dc.date.available | 2013-04-12T19:37:08Z | |
dc.date.copyright | 2012 | en_US |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/78535 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 55-58). | en_US |
dc.description.abstract | We develop an aircraft and control system that is capable of repeatedly performing a high speed (7m/s or 16 MPH) "knife-edge" maneuver through a gap that is smaller than the aircraft's wingspan. The maneuver consists of flying towards a gap, rolling to a significant angle, accurately navigating between the obstacles, and rolling back to horizontal. The speed and roll-rate required demand a control system capable of highly precise, repeatable maneuvers. We address the necessary control theory, path planning, and hardware requirements for such a maneuver, and give a proposal for a new system that may improve upon the existing techniques. | en_US |
dc.description.statementofresponsibility | by Andrew J. Barry. | en_US |
dc.format.extent | 58 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Flying between obstacles with an autonomous knife-edge maneuver | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 834084465 | en_US |