Show simple item record

dc.contributor.advisorNicholas Roy.en_US
dc.contributor.authorBachrach, Abraham Galtonen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-06-17T19:02:38Z
dc.date.available2013-06-17T19:02:38Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79151
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 113-122).en_US
dc.description.abstractWhen operating in unknown environments, autonomous vehicles must perceive and understand the environment ahead in order to make effective navigation decisions. Long range perception can enable a vehicle to choose actions that take it directly toward its goal, avoiding dead ends. In addition, the perception range is critically important for ensuring the safety of vehicles with constrained dynamics. In general, the faster a vehicle moves, the more constrained its dynamics become due to acceleration limits imposed by its actuators. This means that the speed at which an autonomous agent can safely travel is often governed by its ability to perceive and understand the environment ahead. Overall, perception range is one of the most important factors that determines the performance of an autonomous vehicle. Today, autonomous vehicles tend to rely exclusively on metric representations built using range sensors to plan paths. However, such sensors are limited by their maximum range, field of view, and occluding obstacles in the foreground. Together, these limitations make up what we call the metric sensing horizon of the vehicle. The first two limitations are generally determined by the weight, size, power, and cost budget allocated to sensing. However, range sensors will always be limited by occlusions. If we wish to develop autonomous vehicles that are able to navigate directly toward a goal at high speeds through unknown environments, then we must move beyond the simple range-sensor based techniques. We must develop algorithms that enable autonomous agents to harness knowledge about the structure of the world to interpret additional sensor information (such as appearance information provided by cameras), and make inferences about parts of the world that cannot be directly observed. We develop a new representation based around trajectory bundles, that makes this challenging task more tractable. Rather than attempt to explicitly model the geometry of the world in front of the vehicle (which can be incredibly complex), we reason about the world in terms of what the vehicle can and cannot do. Trajectory bundles are designed to capture an abstract concept such as the command "go straight and then turn towards the right" in a concrete and actionable manner. We employ a library of trajectory bundles to reason about the layout of obstacles in the environment based on which bundles in the library are predicted to be feasible. Trajectory bundles provide a lens through which we can look at perception tasks, allowing us to leverage machine learning tools in much more effective ways for navigation. In this thesis we introduce trajectory bundles, and develop algorithms that use them to enable perception-driven planning. We develop a trajectory clustering algorithm that enables us to construct a set of trajectory bundles. We then develop a Bayesian filtering framework that enables us to estimate a belief over which trajectory bundles are feasible based on the history of actions and observations of the vehicle. We test our algorithms by using them to navigate a simulated fixed wing air vehicle at high speeds through an unknown environment using a monocular camera sensor.en_US
dc.description.statementofresponsibilityby Abraham Galton Bachrach.en_US
dc.format.extent122 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleTrajectory bundle estimation For perception-driven planningen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc844754621en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record