Show simple item record

dc.contributor.advisorDavid J. Perreault and Khurram K. Afridi.en_US
dc.contributor.authorInam, Wardahen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-06-17T19:02:47Z
dc.date.available2013-06-17T19:02:47Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79153
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 109).en_US
dc.description.abstractThis thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across a wide range of input voltage, output voltage and power level. The resistance compression network maintains desired current waveforms over a wide range of voltage operating conditions. The use of on/off control in conjunction with narrowband frequency control enables high efficiency to be maintained across a wide range of power levels. The converter implementation provides galvanic isolation and enables large (greater than 1:10) voltage conversion ratios, making the system suitable for large step-up conversion in applications such as distributed photovoltaic converters. Three 200 W prototypes were designed, built and tested. The first prototype was made as a proof of concept and operated at a switching frequency of 100 kHz. It had an efficiency of 93.5% (at 25 V input and 400 V output). The second prototype was operated at a switching frequency of 500 kHz and had an efficiency of 93% (at 25 V input and 400 V output). The high frequency losses caused by the ringing in voltage and current due to the resonating parasitics of the transformer were removed with the help of a matching network in the third prototype. This final prototype operated at a switching frequency of 500 kHz and showed that over 95% efficiency is maintained across an input voltage range of 25 V - 40 V (at 400 V output) and over 93.7 % efficiency across a wide output voltage range of 250 V - 400 V (at 25 V input). These experimental results demonstrated the effectiveness of the proposed design.en_US
dc.description.statementofresponsibilityby Wardah Inam.en_US
dc.format.extent109 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHigh efficiency resonant dc/dc converter for solar power applicationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc844775898en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record