MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable reconfigurable computing leveraging latency-insensitive channels

Author(s)
Fleming, Kermin Elliott, Jr
Thumbnail
DownloadFull printable version (17.52Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Arvind and Joel S. Emer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Traditionally, FPGAs have been confined to the limited role of small, low-volume ASIC replacements and as circuit emulators. However, continued Moore's law scaling has given FPGAs new life as accelerators for applications that map well to fine-grained parallel substrates. Examples of such applications include processor modelling, compression, and digital signal processing. Although FPGAs continue to increase in size, some interesting designs still fail to fit in to a single FPGA. Many tools exist that partition RTL descriptions across FPGAs. Unfortunately, existing tools have low performance due to the inefficiency of maintaining the cycle-by-cycle behavior of RTL among discrete FPGAs. These tools are unsuitable for use in FPGA program acceleration, as the purpose of an accelerator is to make applications run faster. This thesis presents latency-insensitive channels, a language-level mechanism by which programmers express points in their their design at which the cycle-by-cycle behavior of the design may be modified by the compiler. By decoupling the timing of portions of the RTL from the high-level function of the program, designs may be mapped to multiple FPGAs without suffering the performance degradation observed in existing tools. This thesis demonstrates, using a diverse set of large designs, that FPGA programs described in terms of latency-insensitive channels obtain significant gains in design feasibility, compilation time, and run-time when mapped to multiple FPGAs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 190-197).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79212
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.