Show simple item record

dc.contributor.advisorNancy Lynch.en_US
dc.contributor.authorCornejo Collado, Alejandroen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-06-17T19:48:31Z
dc.date.available2013-06-17T19:48:31Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79220
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 165-173) and index.en_US
dc.description.abstractThe field of swarm robotics focuses on controlling large populations of simple robots to accomplish tasks more effectively than what is possible using a single robot. This thesis develops distributed algorithms tailored for multi-robot systems with large populations. Specifically we focus on local distributed algorithms since their performance depends primarily on local parameters on the system and are guaranteed to scale with the number of robots in the system. The first part of this thesis considers and solves the problem of finding a trajectory for each robot which is guaranteed to preserve the connectivity of the communication graph, and when feasible it also guarantees the robots advanced towards a goal defined by an arbitrary motion planner. We also describe how to extend our proposed approach to preserve the k-connectivity of a communication graph. Finally, we show how our connectivity-preserving algorithm can be combined with standard averaging procedures to yield a provably correct flocking algorithm. The second part of this thesis considers and solves the problem of having each robot localize an arbitrary subset of robots in a multi-robot system relying only on sensors at each robot that measure the angle, relative to the orientation of each robot, towards neighboring robots in the communication graph. We propose a distributed localization algorithm that computes the relative orientations and relative positions, up to scale, of an arbitrary subset of robots. For the case when the robots move in between rounds we show how to use odometry information to allow each robot to compute the relative positions complete with scale, of an arbitrary subset of robots. Finally we describe how to use the our localization algorithm to design a variety of multi-robot tasks.en_US
dc.description.statementofresponsibilityby Alejandro Cornejo.en_US
dc.format.extent173 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLocal distributed algorithms for multi-robot systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc844756880en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record