Show simple item record

dc.contributor.advisorGeorge C. Verghese and Atul Malhotra.en_US
dc.contributor.authorNemati, Shamim, 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-06-17T19:48:49Z
dc.date.available2013-06-17T19:48:49Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79223
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 117-125).en_US
dc.description.abstractPhysiological control systems involve multiple interacting variables operating in feedback loops that enhance an organism's ability to self-regulate and respond to internal and external disturbances. The resulting multivariate time-series often exhibit rich dynamical patterns, which are altered under pathological conditions. However, model identification for physiological systems is complicated by measurement artifacts and changes between operating regimes. The overall aim of this thesis is to develop and validate computational tools for identification and analysis of structured multivariate models of physiological dynamics in individual and cohort time-series. We first address the identification and stability of the respiratory chemoreflex system, which is key to the pathogenesis of sleep-induced periodic breathing and apnea. Using data from both an animal model of periodic breathing, as well as human recordings from clinical sleep studies, we demonstrate that model-based analysis of the interactions involved in spontaneous breathing can characterize the dynamics of the respiratory control system, and provide a useful tool for quantifying the contribution of various dynamic factors to ventilatory instability. The techniques have suggested novel approaches to titration of combination therapies, and clinical evaluations are now underway. We then study shared multivariate dynamics in physiological cohort time-series, assuming that the time-series are generated by switching among a finite collection of physiologically constrained dynamical models. Patients whose time-series exhibit similar dynamics may be grouped for monitoring and outcome prediction. We develop a novel parallelizable machine-learning algorithm for outcome-discriminative identification of the switching dynamics, using a probabilistic dynamic Bayesian network to initialize a deterministic neural network classifier. In validation studies involving simulated data and human laboratory recordings, the new technique significantly outperforms the standard expectation-maximization approach for identification of switching dynamics. In a clinical application, we show the prognostic value of assessing evolving dynamics in blood pressure time-series to predict mortality in a cohort of intensive care unit patients. A better understanding of the dynamics of physiological systems in both health and disease may enable clinicians to direct therapeutic interventions targeted to specific underlying mechanisms. The techniques developed in this thesis are general, and can be extended to other domains involving multi-dimensional cohort time-series.en_US
dc.description.statementofresponsibilityby Shamim Nemati.en_US
dc.format.extent125 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIdentifying evolving multivariate dynamics in individual and cohort time series, with application to physiological control systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc844762213en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record