MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward accurate and large-scale silicon photonics

Author(s)
Sun, Jie, Ph.D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (22.04Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Michael R. Watts and Henry I. Smith.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Silicon photonics, emerging from the interface of silicon technology and photonic technology, is expected to inherit the incredible integration ability of silicon technology that has boomed the microelectronic industry for half a century, as well as the unparalleled communication capability of photonic technology that has revolutionized the information industry for decades. Being a prevailing research topic in the past decade, silicon photonics has seen tremendous progresses with the successful demonstrations and commercializations of almost all of the key components, including on-chip light source, low-loss silicon waveguide, and ultrafast silicon modulators and detectors. It seems silicon photonics is ready to take off by following the successful path the microelectronic industry has been traveling through to achieve a large-scale integration of millions of photonic devices on the silicon chip with the aide of the well-established complementary metal-oxide-semiconductor (CMOS) technology. However, there remain some substantial challenges in silicon photonics, including the reliable design and fabrication of silicon photonic devices with unprecedented accuracy, and the large-scale integration of otherwise discrete silicon photonic devices. To this end, this thesis explored several examples as possible means of addressing these two challenges in silicon photonics. Two different ways of improving silicon photonic device accuracy were presented from perspectives of fabrication and device design respectively, followed by a successful integration demonstration where more than 4,000 components worked together on a silicon chip to form a functional large-scale silicon photonic system, representing the largest silicon photonic integration demonstrated to date.
Description
Thesis (Ph. D. in Electrical Engineering)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 155-163).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79225
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.