MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lossless multi-way power combining and outphasing for radio frequency power amplifiers

Author(s)
Jurkov, Alexander S
Thumbnail
DownloadFull printable version (27.58Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David J. Perreault.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
For applications requiring the use of power amplifiers (PAs) operating at high frequencies and power levels, it is often preferable to construct multiple low power PAs and combine their output powers to form a high-power PA. Moreover, such PAs must often be able to provide dynamic control of their output power over a wide range, and maintain high efficiency across their operating range. This research work describes a new power combining and outphasing system that provides both high efficiency and dynamic output power control. The introduced system combines power from four or more PAs, and overcomes the loss and reactive loading problems of previous outphasing systems. It provides ideally lossless power combining, along with nearly-resistive loading of the individual power amplifiers over a very wide output power range. The theoretical fundamentals underlying the behavior and operation of this new combining system are thoroughly developed. Additionally, a straight-forward combiner design methodology is provided. The prototype design of a 27.12 MHz, four-way power combining and outphasing system is presented, implemented, and its performance is experimentally validated over a 1OW-1OOW (10:1) output power range.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 102-106).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79230
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.