MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methods for chemical exchange saturation transfer magnetic resonance imaging

Author(s)
Scheidegger, Rachel Nora
Thumbnail
DownloadFull printable version (17.44Mb)
Alternative title
Methods for CEST MRI
Other Contributors
Harvard--MIT Program in Health Sciences and Technology.
Advisor
David C. Alsop.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Chemical exchange saturation transfer (CEST) is a relatively new magnetic resonance imaging (MRI) acquisition technique that generates contrast dependent on tissue microenvironment, such as protein concentration and intracellular pH. CEST imaging has the potential to become an important biomarker in a wide range of disorders. As an indicator of tissue pH, CEST imaging may allow the identification of the ischemic penumbra in stroke, and predict chemo- and radiation therapy outcomes in cancer. As a marker of protein concentration, CEST may be able to delineate tumor margins without contrast enhancement, identify disease onset in Alzheimer's disease, and monitor cartilage repair therapies. Despite several promising pilot studies, CEST imaging has had limited clinical application due to two main technical challenges. First, CEST imaging is extremely sensitive to magnetic field inhomogeneity. Images suffer from large susceptibility artifacts unless specialized BO inhomogeneity correction methods are employed that tremendously increase scan time. Second, the CEST contrast cannot be separated from the intrinsic macromolecular magnetization transfer (MT) asymmetry and brain images reflect the MT properties of white and gray matter rather than the desired protein and pH contrast. We have developed a novel CEST imaging acquisition scheme, dubbed saturation with frequency alternating RF irradiation (SAFARI), designed to be insensitive to Bo inhomogeneity and MT asymmetry. Studies in healthy volunteers demonstrate that SAFARI is robust in the presence of BO inhomogeneity and eliminates the need for specialized BO correction, thereby reducing scan time. In addition, results show that SAFARI removes the confounding MT asymmetry. We applied SAFARI imaging towards the study of the saturation transfer contrast in patients with high grade glioma. Results show that the contrast in brain tumors, which was previously attributed to an increase in the CEST signal from amide protons due to an elevated protein concentration, is instead the result of the loss of MT asymmetry found in the normal brain. Therefore, our work has lead to a new understanding of the different sources of signal in saturation transfer images of the brain with important implications for the design and analysis of future CEST studies of brain tumors.
Description
Thesis (Ph. D. in Biomedical Engineering)--Harvard-MIT Program in Health Sciences and Technology, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 108-126).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79251
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard--MIT Program in Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.