Show simple item record

dc.contributor.advisorKerri Cahoy.en_US
dc.contributor.authorLohmeyer, Whitney Quinneen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2013-06-17T20:05:05Z
dc.date.available2013-06-17T20:05:05Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79333
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.en_US
dc.descriptionThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from department-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 86-89).en_US
dc.description.abstractTo understand and mitigate the effects of space weather on the performance of geostationary communications satellites, we analyze sixteen years of archived telemetry data from Inmarsat, the UK-based telecommunications company, and compare on-orbit anomalies with space weather observations. Data from multiple space weather sources, such as the Geostationary Operational Environmental Satellites (GOES), are compared with Inmarsat anomalies from 1996 to 2012. The Inmarsat anomalies include 26 solid-state power amplifier (SSPA) anomalies and 226 single event upsets (SEUs). We first compare SSPA anomalies to the solar and geomagnetic cycle. We find most SSPA anomalies occur as solar activity declines, and when geomagnetic activity is low. We compare GOES 2 MeV electron flux and SSPA current for two weeks surrounding each anomaly. Seventeen of the 26 SSPA anomalies occur within two weeks after a severe space weather event. Fifteen of these 17 occur after relativistic electron events. For these fifteen, peak electron flux occurs a mean of 8 days and standard deviation of 4.7 days before the anomaly. Next, we examine SEUs, which are unexpected changes in a satellite's electronics, such as memory changes or trips in power supplies. Previous research has suggested that solar energetic protons (SEPs) cause SEUs. However, we find that SEUs for one generation of satellites are uniformly distributed across the solar cycle. SEUs for a second generation of satellites, for which we currently have only half a solar cycle of data, occur over an order of magnitude more often than the first, even during solar minimum. This suggests that SEPs are not the primary cause of SEUs, and that occurrence rates differ substantially for different satellite hardware platforms with similar functionality in the same environment. These results will guide design improvements and provide insight on operation of geostationary communications satellites during space weather events.en_US
dc.description.statementofresponsibilityby Whitney Quinne Lohmeyer.en_US
dc.format.extent89 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleData management of geostationary communication satellite telemetry and correlation to space weather observationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc845062544en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record