MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust adaptive flight control systems in the presence of time delay

Author(s)
Matsutani, Megumi
Thumbnail
DownloadFull printable version (3.059Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Anuradha M. Annaswamy.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Adaptive control technology is a promising candidate to deliver high performance in aircraft systems in the presence of uncertainties. Currently, there is a lack of robustness guarantees against time delay with the difficulty arising from the fact that the underlying problem is nonlinear and time varying. Existing results for this problem have been quite limited, with most results either being local or at best, semi-global. In this thesis, robust adaptive control for a class of plants with global boundedness in the presence of time-delay is established. This class of plants pertains to linear systems whose states are accessible. The global boundedness is accomplished using a standard adaptive control law with a projection algorithm for a range of non-zero delays. The upper bound of such delays, i.e. the delay margin, is explicitly computed. The results of this thesis provide a highly desirable fundamental property of adaptive control, robustness to time-delays, a necessary step towards developing theoretically verifiable flight control systems.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.
 
This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from department-submitted PDF version of thesis.
 
Includes bibliographical references (p. 161-165).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79339
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Ph.D. / Sc.D.
  • Aeronautics and Astronautics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.