MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and design of semi-solid flow batteries

Author(s)
Brunini, Victor Eric
Thumbnail
DownloadFull printable version (15.66Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
W. Craig Carter, Yet-Ming Chiang, and Christopher A. Schuh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A three-dimensional dynamic model of the recently introduced semi-solid flow battery system is developed and applied to address issues with important design and operation implications. Because of the high viscosity of semi-solid flow battery suspensions, alternative modes of operation not typically used in conventional redox flow battery systems must be explored to reduce pumping energy losses. Modeling results are presented and compared to experimental observations to address important considerations for both stoichiometric and intermittent flow operation. The importance of active material selection, and its impact on efficient stoichiometric flow operation is discussed. Electrochemically active zone considerations relevant to intermittent flow operation of semi-solid flow batteries (or other potential electronically conductive flow battery systems) are addressed. Finally, the use of the model as a design tool for optimizing flow channel design to improve system level performance is demonstrated.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 111-116).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/79549
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.