MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular dynamics modeling of orientation-induced nucleation in short alkanes : toward molecular modeling of flow-induced crystallization in polymers

Author(s)
Đjurdjević, Predrag (Predrag Dragutin)
Thumbnail
DownloadFull printable version (4.399Mb)
Alternative title
Molecular simulation of primary nucleation and growth from oriented melts in polyethylene
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Gregory C. Rutledge and Samuel M. Allen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The enhancement of the primary flow-induced nucleation rate in short chain alkanes (C20 and C150) has been examined for different levels of orientation by atomistic molecular dynamics simulations. The nucleation rate has been found to change drastically by varying average molecular orientation and temperature. For example, it is possible to accelerate nucleation kinetics by three orders of magnitude at the same temperature, but varying the average level of orientation (P2 (cos [Theta])) . The size of the critical nucleus has been found to increase with the level of undercooling Tm - T decrease, consistent with the classical nucleation theory. Our atomnistic molecular dynamics simulation model is even tractable at the small levels of undercooling, thus clearly demonstrating the effects of orientation (melt anisotropy) on nucleation kinetics when thermal nucleation is expected to be negligible. Furthermore, we calculate the influence of melt anisotropy on the growth rate. As expected, the growth rate is also altered by melt anisotropy. Furthermore, the growth rate maximum always occurs at the temperature above the nucleation kinetics maximum.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.
 
Title as it appears in MIT degrees awarded booklet, September 2012: Molecular simulation of primary nucleation and growth from oriented melts in polyethylene. Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 59-63).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79557
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.