MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rocking ratchet induced by pure magnetic potentials with broken reflection symmetry

Author(s)
Perez de Lara, D.; Ng, B. G.; Korner, H. S.; Dumas, R. K.; Gonzalez, E. M.; Liu, Kai; Schuller, Ivan K.; Vicent, J. L.; Castano, Fernando; Ross, Caroline A.; ... Show more Show less
Thumbnail
DownloadRoss_Rocking ratchet.pdf (735.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A ratchet effect (the rectification of an ac injected current) which is purely magnetic in origin has been observed in a superconducting-magnetic nanostructure hybrid. The hybrid consists of a superconducting Nb film in contact with an array of nanoscale magnetic triangles, circular rings, or elliptical rings. The arrays were placed into well-defined remanent magnetic states by application of different magnetic field cycles. The stray fields from these remanent states provide a magnetic landscape which influences the motion of superconducting vortices. We examined both randomly varying landscapes from demagnetized samples and ordered landscapes from samples at remanence after saturation in which the magnetic rings form parallel onion states containing two domain walls. The ratchet effect is absent if the rings are in the demagnetized state or if the vortices propagate parallel to the magnetic reflection symmetry axis (perpendicular to the magnetic domain walls) in the ordered onion state. On the other hand, when the vortices move perpendicular to the magnetic reflection symmetry axis in the ordered onion state (parallel to the domain walls) a clear ratchet effect is observed. This behavior differs qualitatively from that observed in samples containing arrays of triangular Ni nanostructures, which show a ratchet of structural origin.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/79740
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Perez de Lara, D., F. J. Castaño, B. G. Ng, H. S. Korner, R. K. Dumas, E. M. Gonzalez, Kai Liu, C. A. Ross, Ivan K. Schuller, and J. L. Vicent. “Rocking ratchet induced by pure magnetic potentials with broken reflection symmetry.” Physical Review B 80, no. 22 (December 2009). © 2009 The American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.