MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimum description complexity

Author(s)
Beheshti, Soosan, 1969-
Thumbnail
DownloadFull printable version (5.971Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Munther A. Dahleh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The classical problem of model selection among parametric model sets is considered. The goal is to choose a model set which best represents observed data. The critical task is the choice of a criterion for model set comparison. Pioneer information theoretic based approaches to this problem are Akaike information criterion (AIC) and different forms of minimum description length (MDL). The prior assumption in these methods is that the unknown true model is a member of all the competing sets. We introduce a new method of model selection: minimum description complexity (MDC). The approach is motivated by the Kullback-Leibler information distance. The method suggests choosing the model set for which the model set relative entropy is minimum. We provide a probabilistic method of MDC estimation for a class of parametric model sets. In this calculation the key factor is our prior assumption: unlike the existing methods, no assumption of the true model being a member of the competing model sets is needed. The main strength of the MDC calculation is in its method of extracting information from the observed data.
 
(cont.) Interesting results exhibit the advantages of MDC over MDL and AIC both theoretically and practically. It is illustrated that, under particular conditions, AIC is a special case of MDC. Application of MDC in system identification and signal denoising is investigated. The proposed method answers the challenging question of quality evaluation in identification of stable LTI systems under a fair prior assumption on the unmodeled dynamics. MDC also provides a new solution to a class of denoising problems. We elaborate the theoretical superiority of MDC over the existing thresholding denoising methods.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
 
Includes bibliographical references (p. 136-140).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8012
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.