Show simple item record

dc.contributor.advisorBenoit Forget.en_US
dc.contributor.authorGibson, Nathan A. (Nathan Andrew)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2013-09-12T19:17:40Z
dc.date.available2013-09-12T19:17:40Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/80662
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 79-81).en_US
dc.description.abstractIn reactor physics calculations for reactor design and operations, today's methods rely on approximate models to account for resonance self-shielding effects. A multi-level approach, which includes several levels of calculations where complexity in energy is decreased as spatial complexity is increased, is employed to model nuclear reactors. However, this approach breaks down when alternate materials and reactor designs are considered. Thus, in order to simulate behavior in an unconventional system, higher fidelity methods are desired. Continuous energy or ultrafine multigroup nuclear data allows this high fidelity to be achieved but is associated with a high computational expense. This thesis proposes that the Discrete Generalized Multigroup (DGM) method is a possible means of approximating the high fidelity results associated with an ultrafine energy mesh without the high degree of computational expense. DGM maps the ultrafine group energy mesh to a coarser energy mesh, where transport calculations are performed, through a discrete expansion. Additional data-moments of the expansion-are retained to unfold an approximate ultrafine energy spectrum. A recondensation procedure is used, where the method is applied in succession, allowing details from the coarse group calculation to influence the collapse of the coarse group data. In applying DGM to an ultrafine energy mesh, prohibitive computational expense is seen to exist in the computation of moments of the scattering matrix and in the flux updates used to maintain stability. Means of reducing the computational expense associated with the scattering matrix are suggested, but left to future work. Flux updates are removed by introducing Krasnoselskij iteration and a group mapping algorithm to the DGM recondensation procedure. Krasnoselskij iteration allows recondensation to become convergent by using a portion of the previous iterate when updating the solution vector. The group mapping algorithm places coarse group boundaries where large disparities in fine group cross sections are present, enhancing the stability characteristics of recondensation. These algorithmic changes do not negatively impact the accuracy of the procedure and remove a large computational expense from the method. Ultimately, the method is deemed to be an attractive option for approximating a high fidelity solution.en_US
dc.description.statementofresponsibilityby Nathan A. Gibson.en_US
dc.format.extent92 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleResonance treatment using the Discrete Generalized Multigroup methoden_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc857588149en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record